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FLOW PAST FORWARD-FACING SMALL STEP 

V. V. Bogolepov UDC 5 3 2 . 5 2 6 . 0 1 1 : 5 1 8 . 5  

Uniform subsonic or supersonic laminar flow of a viscous fluid past a flat plate is con- 
sidered. A small two-dimensional roughness element is present on the flat plate surface at a 
distance 1 from the leading edge. The solution to Navier--Stokes equations is developed for 
the case when the characteristic Reynolds number Reo Pouo//~o E -2 tends to infinity r = = \ P o ~  

uo, ~o are the density, velocity, and the coefficient of dynamic viscosity in the undisturbed 
free stream). In what follows, only nondimensional quantities will be used and for this pur- 
pose the reference quantities are: 1 for length, uo for velocity, po for density, pouo 2 for 
pressure, uo 2 for enthalpy, 0oUo/ for the stream function, and ~o for the coefficient of 
dynamic viscosity. Systematic studies on the flow past small roughness over the surface of 
a body with characteristic transverse and longitudinal dimensions a and b (2~a~eSa~<b<l) 
have been done in [I, 2], where, in particular, it has been shown that the flow near a rough- 
ness with a ~ b ~ 0(~ 312) in the first approximation as e § O, is described by Navier--Stokes 
equations for incompressible fluid, the velocity profiles and enthalpy in the external flow 

2 
are sheared and the critical similarity parameter is the local Reynolds number Re = PwAal/~w 
(the index w refers to the values at the flat plate surface in undisturbed boundary layer), A 
is the shear stress at the flat plate surface in undisturbed boundary layer, a = ~3/2ai, al 
O(I). For Re, it is possible to obtain the following estimate [3]: Re ~ Re~/2(a/s) 2, from 
which it follows that as a/s ~ ] and Reo ~ IO s (i.e., for real and practically significant 
values of Reo) the value of Re cannot exceed a few tens. Solutions to Navier--Stokes equations 
for the incompressible shear flow past a roughness on a body surface with Re ~ 100 are ob- 
tained in [4-6]. One of the distinctive features of these solutions is their existence at 
Re = 0 [5, 6], i.e., solutions of Navier--Stokes equations have been obtained for plane flows. 
Besides, even at Re = 0 separated zones have been observed in the flow field. The damping 
of disturbances far behind such roughness is also very typical and its study can be made with 
an analysis of the boundary layer equations along with the local condition for the interaction 
with the subsonic wall layer of the undisturbed boundary layer [7, 8]. 

It is useful to mention that the flow past roughness with ~3/2<<a ~ b << ~ in the first 
approximation as ~ + 0 is described by Euler equations for incompressible fluid with an exter- 
nal shear flow [I, 2]. 

Let there be a rectangular step on a flat plate with a characteristic height a ~ O(~ 3/2) 
and a characteristic length gs/2<< b <<E3/4. As shown in [I' 2], the flow past such a rough- 
ness is described by linearized incompressible boundary-laver equation with linearized local 
conditions for the interaction with the subsonic wall layer of the undisturbed boundary layer. 
It has been obtained in [8] that on the surface of such a step as one moves away from its 
face the disturbances in heat flux hq and shear stress AT damp out at the following rate with 
respect to their values in the undisturbed boundary layer at the plate surface 

Aq  ~ AT  ~ X -1/3 (X"-)- 00) ( 2 .  1) 

( i . e . ,  damping  o f  d i s t u r b a n c e s  q and T i s  v e r y  w e a k ) ,  and  p r e s s u r e  d i s t u r b a n c e s  p < 0 i n c r e a s e  

]p] ,'~ xl/3 (x'-* co). ( 2 . 2 )  

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
35-40, March-April, 1983. Original article submitted January 28, 1982. 

166 0021-8944/83/2402- 0166507.50 �9 1984 Plenum Publishing Corporation 



u=h=~ 

_7 

/ / . / / / / / / / / /  / /0/  

Fig. ! 

In order to study the flow in the neighborhood of the front face of the step (forward 
facing rectangular step), it is necessary to consider the re~ion with characteristic dimen- 
sion x ~ y ~ 0(~3/2), for which the Navier--Stokes equations are va!i~ and the e~ternai flow 
is the near-wall subsonic flow of the undisturbed boundary layer (Fig, I): 

au Ou c~u ou c)p i (a2u . c ) ~ u ' ~  
~-x + ~ s  u~;.,~ §  ~ ~ + ~ ) '  (2 .3)  

u ~ = v ~ = h ~ = O ,  u-~y,  h-+g (x ~+y~--+oo). 

Here  a l l  the  l i n e a r  d i m e n s i o n s  a r e  r e f e r r e d  to  the  h e i g h t  o f  the  s t e p  a t ,  v e l o c i t y  and en-  
t h a l p y  d i s t u r b a n c e  w i t h  r e s p e c t  to  t h e i r  v a l u e  a t  t h e  s u r f a c e  o f  t he  body ,  i . e . ,  to  t h e i r  
v a l u e s  a t  a h e i g h t  ~ in  t he  w a l l  l a y e r  o f  the  u n d i s t u r b e d  b o u n d a r y  l a y e r  Aa~ and Ba~ (B i s  
t he  h e a t  f l u x  a t  t he  p l a t e  s u r f a c e  in  t h e  u n d i s t u r b e d  b o u n d a r y  l a v e r ) ,  p r e s s u r e  and s t r e a m  

2 2 2 f u n c t i o n  a r e  r e f e r r e d  to  ~wA a~ and 0wAa~; o i s  t he  P r a n d t l  number .  With t h e s e  q u a n t i t i e s ,  
t he  s h e a r  s t r e s s  �9 and h e a t  f l u x  q in  t he  u n d i s t u r b e d  b o u n d a r y  l a y e r  a t  t he  f i a t  p l a t e  s u r f a c e  
e o u a l  one .  

The solution of the boundary-value problem (2.3) at Re ~I00 makes it possible to study 
aerodynamic heating of the practically important element, viz., the small rectangular step on 
the surface of the body, makes it possible to study the nature of the separated flow near 
such a typical configuration. 

It is convenient to introduce new dependent variables for the numerical solution of the 
boundary-value problem (2.3), viz., for the fluctuation of stream function, enthalpy, and 
vorticity with respect to their values in the mean shear flow 

= y~/2 q- % h = y 4- g, a~/Ox ~ + 0"-~/@ 2 = i -- ~, 

in which Navier--Stokes equations (2.3) take the form 

0 7  4 - ~ - - - - ~ ,  - - 4 - - - - - - - s  ( 2 . 4 )  ,~x~ au ~ L ~ ~- ;~f / - -  ~ \~ o.~ ]J' 

a2g__ c,'~g__=Reo[O ( o_jy~)_ a ( ~ ) _ o , ]  
oz ~ 4- o /  ~ g ~ g ~ " 

instead of the pressure p the function D = Re(p + (u z + va)/2 --y2/2 --(P) is introduced 
and its behavior in the flow field is described by the equation 

~ fD+s176  ~ ~ x / + ~  ~ ; ~  �9 
dx 2 dy 2 

O b v i o u s l y ,  on t h e  s u r f a c e  o f  t he  body  D -= p .  

Boundary c o n d i t i o n s  on the  s u r f a c e  o f  the  body f o r  the  f u n c t i o n  tp,(x, y)  and g ( x ,  y)  have  
the form 

(p(x, O)= O, (s U ) = - - U  2/2, (~(x, l ) = - - t / 2 ,  ( 2 . 6 )  

g(z, o ) =  o, g(O, ~ ) = - u ,  g(x, l ) = - t .  
i 

For the function ~(x, y) the usual approximate conditions of first-order accuracy [9] are 
used 

(2.7) 
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~(x, 0) = - -s in(x ,  iy)/Ay 2 + O(Ay), 
~(0, y) - -  i - -  2[q~(--Ax,  y) -}- y~12]/Ax 2 + O(Ax),  

~(x, 1) = --2[qo(x, t + hy) -}- t /2  + Ay]/hy ~ + O(ay); 

for the function D(x, y) only normal derivatives are specified, 

(aDlay)(x, O ) =  (aUax)(x, 0), (aD/Ox)(O, y ) =  (aUay)(O, y), 
(OD/ay)(x, t ) =  (O~/Ox)(x, i). 

I n  d e r i v i n g  the  o u t e r  boundary  c o n d i t i o n s  i t  i s  u s e f u l  to  u t i l i z e  the  c o n d i t i o n  t h a t ,  as 
a l r e a d y  ment ioned  above ,  when x z § yZ § ~,  the  g iven  f low becomes i n v i s c i d .  I t  i s  e a s y  to  
o b s e r v e  t h a t  the  f u n c t i o n  

~p(x, y) ----- y~'/2 - -  arg (ytx)/2:~ (2 .8 )  

d e s c r i b e s  a s h e a r  f low o f  an i d e a l  f l u i d  p a s t  a SteD. Hence,  the  e x p r e s s i o n  .(2.8) can be 
used as the  o u t e r  b o u n d a r y  c o n d i t i o n  f o r  the  p rob lem ( 2 . 3 ) .  The o u t e r  boundary  c o n d i t i o n s  
f o r  the  f u n c t i o n  ~ ( x ,  y ) ,  5 (x ,  y) and g ( x ,  y) were used i n  the  form 

-~ arg (y/x), ~ .-., xy/(x ~ q- y2)~, g ..~ arg (ylx)/y (x ~ + y2...+ oo). (2.9) 

To compute boundary  c o n d i t i o n s  a t  y § ~ f o r  the  f u n c t i o n  D(x, y ) ,  the  f o l l o w i n g  e q u a t i o n  
was i n t e g r a t e d  

OD/Ox = - - R e  ~O(~/ax - -  O ~/Oy ( 2 .  l O) 

with initial condition 

D(--~, ~)=0, (2.11) 

as x § -+~ the normal derivatives ~D/8 x from Eq. (2.10) were specified. 

A nonuniform rectangular difference grid of dimension 43 • 32 was specified in the flow 
field and its concentration increased in geometric progression with index k = 5/6 as the sur- 
face of the body was approached. Computations were made at minimum step sizes for the dif- 
ference grid Ax = Ay = 0.067, the outer boundary of the computational field was located at 
x ~+15 and y ~ 16 (at the face of the step for such a breakup of the computational field 
there were 10 intervals of difference grid). 

3 

50 Re 

Fig. 3 
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Fig. 4 

The boundary-value problems (2.4), (2.6), (2.7), and (2.9) were approximated by the 
first-order accurate difference [lO] which was solved by an iterative procedure. The method 
of variable direction [11] was used at each iteration. Iterations were completed when the 
difference in the values of shear stress or heat flux at the surface of the body between two 
consecutive iterations was less than 0.1%. 

Comoutational results have been obtained in the range of local Reynolds number Re = 0- 
I00. Prandt] number was assumed eaual to 0.71. 

Computational results show that the fluid flow ahead of the step is decelerated, shear 
stress T and heat flux q at the surface of the body are decreased. As x ~.--i there is a flow 
separation~ there is a seoarated zone, and the reattachment of the flow takes olace close to 
the center of thestep face. 

The values of T and q on the face of the step sharply increase toward the upper edge of 
the face of the step. At the upper side of ~ the step T and q initially fall very considerably 
with distance from the face of the step but then their chan~e is very small and the distur- 
bances are propagated far downstream. The very neighborhood of the upper edge of the face of 
the step does not form separated zones. Such a flow field is maintained in the entire range 
of Reynolds number under study. 

Figure 2 shows the distribution of ~ for Re = 0; 31.6; I00 (curves I-3) and q for Re = 0; 
10; 100 (curves 4-6) ahead of the step. It is seen that disturbances from the step are Drooa- 
Rated quite far upstream, the propagation of disturbances is intensified with increase in Re, 
the extent of the separated zone varies nonmonotonically as a function of Re. The separated 
zone is the largest at Re = 0, its extent Xl = 0.77 and height Yl = 0.775. Initially with 
increase in Re the dimensions of the separated zone decrease rapidly with x~ yl. At Re ~20 
the separation zone has minimum dimensions x~ ~ y ~  0.35. With further increase in Re x~ 
begins to rise and the value of y~ practically remains constant (see curves |, 2 in Fig. 3, 
left axis of ordinates). An increase in Re practically corresponds to an increase in the 
external flow velocity (more correctly, an increase in its ~radient A). Hence at small values 
of Re, its incease leads to delay of seoaration since pressure disturbances ~Re 2 are still 
small. With further increase in Re pressure disturbances rise very strongly and the separated 
zone begins to increase. 

The distributions of ~ at Re = 0; 3.16; 31.6 (curves ]-3) and q at Re = 0; 31.6; I00 
(curves 4-6) along the face of the step are shown in Fi~. 4. The neighborhood of the upper 
edge of the face of the step is a singular regio n for the given flow and the values of T and 

12 
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Fig. 5 
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I 1 

q there do not have any practical meaning. However, the integral values ~ Tdy and ~ qdy may 
0 8 

have great practical interest, being the total Stein friction drag and heat flux acting on 
the face of the step (curves 3, 4 in Fig. 3, the right and the left axis of ordinates). 

The damping characteristics of the disturbance downstream are shown in Fig. 5, where the 
distribution of T at Re = 0; ]00 (curves I, 2) and q at Re = 0, ]00 (curves 3, 4) behind the 
step are shown. It is seen that close to the face of the step at x ~1.5 skin friction and 
heat flux vary strongly but farther away from the face of the step their variation is small. 
Such a behavior of T and q at x >>l is found to be in quantitative agreement with the damping 
characteristic of disturbances (2.]) described earlier. We note that at Re = 100, for exam- 
Dle, q exceeds its value in undisturbed boundary layer at the plate surface by nearly ! .5 
times even at x ~I0. 

A fivefold increase in the computational accuracy, the use of second-order accurate con- 
ditions for vorticity at the surface of the body (instead of conditions (2.7)), or the useof a 
smaller difference grid (20 intervals of difference grid on the face of the step, minimum 
step size of the difference grid Ax = Ay = 0.0]9) do not increase the accuracy of the com- 
puted results beyond the accuracy of the approximation used in the computational scheme. It 
is true that computation with smaller grids at the lower corner of the step showed one more 
circulation zone having a size almost twice the interval of the computational grid in terms 
of the length and height. 

The characteristics of the computation of pressure using the known numerical solution 
for the stream function and vorticity are described in detail in [12]. In the present work, 
it is proposed to use the values of the function D(x, y) obtained by integrating Eq. (2,10) 
with initial condition (2. I]) as the boundary conditions at y § ~ which makes it possible to 
correctly obtain the solution of Eq. (2.5). Obviously, in integrating (2.10) errors of 
approximation occur but from an analysis of the computed results for ~(x, y) it follows that 
an Re ~ I and y 36 ~(x, y) - 0, and then the integration of (2.]0) with the initial condi- 
tion (2.11) gives D(x, y) = 0 (Re 31, y + ~). 

The differential equation (2. 5 ) in the first difference ~rid was apnroximated by dif- 
ference equations using central differences; the method used was the same as that used to 
compute ~p(x, y) or ~(x, y). The pressure distribution at Re = 0: 3.16; ]0; 3] .61 I00 
(curves I-5) along the surface of the step are shown in Fig. 6 (at Re = 0 the quantity Re p 
is finite); it is clearly seen that there is a significant increase in the upstream propaga- 
tion of disturbances with increase in Re. The pressure continues to rise with an upward 
movement alonz the face of the step and while crossing over the upger side of the ste~ there 
is a sudden drom in pressure and then for x >>I it continues to fall gradually. Unfortunate- 
ly, computed results do not confirm the asymptotic nature of the variation in pressure 
(2.2) (for this it is necessary to considerably increase the dimensions of the computational 
field downstream). The relations between pressure at the separation and reattachment points 
and Re are shown in Fig. 3 (curves 5, 6, right axis of ordinates). 
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LrNSYMMETRIC CORNER FLOWS 

V. I. Kornilov and A. M. Kharitonov UDC 532.526.4 

Streamwise flow past corners is characterized by the development of secondary flows in 
the neighborhood of the bisecting plane []-4]. These streamwise vortices in the boundary 
layer were determined by Prandtl [5] as secondary flows of the second type, i.e., flows 
where the velocity gradients ~/~y and $/~z ~ 8/~x. Such flows are caused by Reynolds stress 
gradients along the y and z axes, which induce v and w components in the interaction region 
of the boundary layers. The extent of this wall region in the transverse direction is on the 
order of (2-4) times the boundary-layer thickness at the given section [6]. Conditions for 
the appearance and development of such flows with the transition of laminar to turbulent 
boundary layers in the case of symmetrically developing boundary layers ina straigfit two-sided 
corner are studied in detail in [7]. However, in a number of practical cases there is an 
unsymmetric interaction of boundary layers. Such flows are realized, e.g., in the wing-- 
fuselage junctions and other flight vehicle components. They are characterized by different 
growth history of the boundary layers on the sides of the corners which leads to asymmetric 
flow in the neighborhood of the bisecting plane. This type of boundary-layer interaction is 
the most complex and least studied, and as yet there is no acceptable model for computing such 
flows. Even experimental data describing the physical picture of the phenomenon are also 
very limited. The only known investigations are in [8] in which the flow characteristics 
were studied in the neighborhood of the junction of a slender wing profile mounted on the 
wall of a wind tunnel test-section of a rectangular cross section. Here the wing leading 
edge was a semiellipse with b/a = ]:6. This paper presents results of experimental studies 
on the structure of turbulent flow at the junction of two plane surfaces which can be 
schematically considered as an idealized joint of the wing--fuselage type. A sufficiently wide 
variation was made in asymmetry which can be conditionally characterized by the ratio of the 
thicknesses of interacting boundary layers ~B/6 A. This made it possible to analyze the var- 
iation in the structure of such flows as it transforms from a simple pattern in which sym- 
metrically developing boundary layers (6B/6 A = i) interact to form a more complex structure where 
there is an interaction of boundary layers with different growth histories (6B/6A > I). 
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